To filter or select
WHY
Skin creams are commonly used to improve skin health and create a smooth, soft, and moist perception. This is achieved by altering the surface roughness, friction, and adhesion of skin surface. Despite the fact that there are many commercial creams available, there is no consistent scientific approach to determine their frictional and adhesive properties.
WHY
In everyday life people use hairstyling products such as waxes or gels, to improve the holding of hair and improve/change its appearance. However, in the market there are many products available, claiming to have different characteristics (e.g. strong hold, silky/smooth touch…). To define the performance of such products, tribology comes into play. In particular two parameters are important. The friction determines how easy a wax or gel can be applied, whereas the stickiness and tackiness determine their holding ability.
WHY
During the processing of bricks in the construction industry, clays slurries can adhere (stick) to mechanical components such as mixers, hindering their function. In addition, in the drilling industry severe damage of the drills can be caused by the sticking and swelling (due to water adsorption) of soils onto the drills. A methodology needs to be developed to measure the stickiness of clays/soils on metallic components.
WHY
Lubricating greases are used in various industrial fields ranging from food, transportation, aeronautical, construction, mining and steel industry. The aim is to decrease frictional forces and to protect industrial components from wear and/or corrosion damage. Their performance depends on interaction properties like adherence to the substrate, cohesion or consistency, and tackiness. However, up to date there is no established quantitative methodology that can be easily applied to efficiently and accurately evaluate the adhesion and tackiness of a grease.