Evaluating frictional and wear characteristics of very thin nanostructured layers with macro scale tribometers, in the Newton load range, can create unrealistic conditions.  Wear phenomena are highly dependent on the contact conditions: such high loads are not relevant in the case of MEMS. The adhesive and capillary components that contribute to friction, in a micro-contact, can not be simulated with high load devices.  Therefore, there is an increasing need to use new tribological testers and procedures to obtain a better understanding of surface interactions on an appropriate scale.


The Basalt-N2 tribometer can bridge the gap between the macro-load (conventional pin-on-disk) and nano-load (atomic force microscopes AFM) tribometers. Its versatile loading system, and by selecting cantilevers or strain gauges a load range of 0.2 mN up to 100 N is possible. In the case, loads between 500 mN and 2 N were investigated. Different contact geometries (point, line, area contacts) and sliding velocities can also be used. Due to the high sensitivity of this tester the transition between different phases can be successfully recorded (e.g. sliding between coated and uncoated components).